• Найдите наибольшее и наименьшее значение функции на указанном промежутке y=x^3-12x+5,[-2;1]

Ответы 1

  • 1. Найдем первую производную функции у = х^3 - 12х + 5:

    у\' = 3х^2 - 12.

    2. Приравняем эту производную к нулю:

    3х^2 - 12 = 0;

    3х^2 = 12;

    х^2 = 4;

    х1 = 2;

    х2 = -2.

    3. Узнаем значение функции в этих точках и на концах заданного отрезка:

    у(2) = 8 - 24 + 5 = 13 - 24 = -11;

    у(-2) = -8 + 24 + 5 = -8 + 29 = 21;

    у(-2) = 21;

    у(1) = 1 - 12 + 5 = 6 - 12 = -6.

    Тогда на промежутке [-2; 1] fmax = 21, fmin = -6.

    Ответ: fmax = 21, fmin = -6.

    • Автор:

      micheal
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years