Предмет:
МатематикаАвтор:
анонимИмеем функцию:
y = e^x * (2 * x - 3).
Для нахождения экстремумов функции найдем производную функции:
y\' = e^x * (2 * x - 3) + e^x * 2;
y\' = e^x * (2 * x - 3 + 2);
y\' = e^x * (2 * x - 1).
Приравниваем производную к нулю. Первый множитель принимает только положительные значения, значит:
2 * x - 1 = 0;
x = 0,5.
Нашли экстремум функции. Если x < 0,5 - функция убывает, так как производная меньше нуля, и если x > 0,5 - функция возрастает.
x = 0,5 - точка минимума функции.
Автор:
amyaДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть