Предмет:
МатематикаАвтор:
анонимВынесем за скобки общий множитель — х^3:
х^3 * (х^2 - 1) = 0.
Воспользуемся формулой сокращенного умножения для разности квадратов двух чисел и запишем выражение в виде:
х^3 * (х - 1)(х + 1) = 0.
Значение произведения равно 0, если хотя бы один из множителей равен 0, поэтому запишем:
х^3 = 0 или х - 1 = 0 или х + 1 = 0.
Решая эти уравнения, находим, что х1 = 0, х2 = 1, х3 = -1.
Проверка:
1) х1 = 0
0^5 - 0^3 = 0;
0 - 0 = 0;
0 = 0;
2) х2 = 1
1^5 - 1^3 = 0;
1 - 1 = 0;
0 = 0;
3) х3 = -1
(-1)^5 - (-1)^3 = 0;
-1 - (-1) = 0;
-1 + 1 = 0;
0 = 0.
Автор:
snickerdoodleДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть