Предмет:
МатематикаАвтор:
анонимНайдем значение выражения cos (a + pi/6) - cos (a - pi/6).
Для решения, используем свойства тригонометрии и получим:
cos (a + pi/6) - cos (a - pi/6) = cos a * cos (pi/6) - sin a * sin (pi/6) - (cos a * cos (pi/6) + sin a * sin (pi/6)) = cos a * √3/2 - sin a * 1/2 - (cos a * √3/2 + sin a * 1/2) = √3/2 * cos a - 1/2 * sin a - √3/2 * cos a - 1/2 * sin a = -1/2 * sin a - 1/2 * sin a = sin a * (-1/2 - 1/2) = sin a * (-1) = -sin a.
Автор:
barrettmndgДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть