Ответы 1

  • Найдём производную нашей данной функции: f(х) = х * sin (2х + 1).

    Воспользовавшись основными формулами и правилами дифференцирования:

    (х^n)’ = n * х^(n-1).

    (sin х)’ = cos х.

    (с)’ = 0, где с – const.

    (с * u)’ = с * u’, где с – const.

    (u ± v)’ = u’ ± v’.

    (uv)’ = u’v + uv’.

    y = f(g(х)), y’ = f’u(u) * g’х(х), где u = g(х).

    Таким образом, производная нашей данной функции будет следующая:

    f(х)\' = (х * sin (2х + 1))’ = (х)’ * sin (2х + 1) + х * (sin (2х + 1))’ = (х)’ * sin (2х + 1) + х * (2х + 1)’ * (sin (2х + 1))’ = (х)’ * sin (2х + 1) + х * ((2х)’ + (1)’) * (sin (2х + 1))’ = 1 * sin (2х + 1) + х * (2 + 0) * cos (2х + 1) = sin (2х + 1) + 2хcos (2х + 1).

    Ответ: Производная нашей данной функции будет равна f(х)\' = sin (2х + 1) + 2хcos (2х + 1).

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years