• одна из сторон прямоугольника на 7 см больше другой,а его диагональ равна 13 см.Найдите стороны прямоугольника.

Ответы 1

  • Пусть одна из сторон прямоугольника будет равна х см, тогда вторая сторона равна (х + 7) см.

    Диагональ прямоугольника составляет с двумя сторонами прямоугольника треугольник, у которого угол равен 90° (диагональ - это гипотенуза).

    По теореме Пифагора: х² + (x + 7)² = 13².

    х² + х² + 14х + 49 - 169 = 0;

    2х² + 14х - 120 = 0.

    Поделим уравнение на 2:

    х² + 7х - 60 = 0.

    Решаем квадратное уравнение с помощью дискриминанта:

    a = 1; b = 7; c = -60;

    D = b² - 4ac; D = 7² - 4 * 1 * (-60) = 49 + 240 = 289 (√D = 17);

    x = (-b ± √D)/2a;

    х1 = (-7 - 17)/2 = -24/2 = -12 (не подходит).

    х2 = (-7 + 17)/2 = 10/2 = 5 (см) - одна из сторон прямоугольника.

    Тогда вторая сторона равна х + 7 = 5 + 7 = 12 см.

    Ответ: стороны прямоугольника равны 5 см и 12 см.

    • Автор:

      donnaqg2s
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years