Ответы 1

  • Найдём производную нашей данной функции: f(x) = (3x^2 - 2) / x^3.

    Воспользовавшись основными формулами и правилами дифференцирования:

    (x^n)’ = n * x^(n-1).

    (с)’ = 0, где с – const.

    (с * u)’ = с * u’, где с – const.

    (u ± v)’ = u’ ± v’.

    (u / v)’ = (u’v - uv’) / v2.

    y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).

    Таким образом, производная нашей данной функции будет следующая:

    f(x)\' = ((3x^2 - 2) / x^3)’ = ((3x^2 - 2)’ * x^3 - (3x^2 - 2) * (x^3)’) / (x^3)^2 = (((3x^2)’ - (2)’) * x^3 - (3x^2 - 2) * (x^3)’) / x^6 = ((3 * 2 * x - 0) * x^3 - (3x^2 - 2) * (3 * x^2)) / x^6 = (6x^3 – 9x^4 -6x^2) / x^6 = ((x^2) * (6x – 9x^2 -6)) / x^6 = (6x – 9x^2 -6)) / x^4.

    Ответ: Производная нашей данной функции будет равна f(x)\' = (6x – 9x^2 -6)) / x^4.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years