Ответы 1

  • Найдём производную нашей данной функции: f(x) = x * 2^x.

    Воспользовавшись основными формулами и правилами дифференцирования:

    (x^n)’ = n * x^(n-1).

    (a^x)’ = a^x * ln a.

    (с)’ = 0, где с – const.

    (с * u)’ = с * u’, где с – const.

    (uv)’ = u’v + uv’.

    y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).

    Таким образом, производная нашей данной функции будет следующая:

    f(x)\' = (x * 2^x)’ = (x)’ * 2^x + x * (2^x)’ = 1 * 2^x + x * 2^x * ln 2 = 2^x + x * 2^x * ln 2.

     

    Ответ: Производная нашей данной функции будет равна f(x)\' = 2^x + x * 2^x * ln 2.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years