Предмет:
МатематикаАвтор:
анонимНайдём производную нашей данной функции: f(x) = x – sin (x).
Воспользовавшись основными формулами и правилами дифференцирования:
(x^n)’ = n * x^(n-1).
(e^x)’ = e^x.
(sin (x))’ = cos (x).
(с)’ = 0, где с – const.
(с * u)’ = с * u’, где с – const.
(u ± v)’ = u’ ± v’.
y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).
Таким образом, производная нашей данной функции будет следующая:
f(x)\' = (x – sin (x))’ = (x)’ – (sin (x))’ = 1 – cos (x) = 1 – cos (x).
Ответ: Производная нашей данной функции будет равна f(x)\' = 1 – cos (x).
Автор:
julianyg19Добавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть