• На поверхности озера плавает круглый плот радиусом 0.8м. Над центром плота на высоте 1.2м, зажгли ночью фонарь. Глубина

Ответы 1

  • Если провести плоскость через точку крепления фонаря и центр плота, то свет фонаря, проекция фонаря на плот (перпендикуляр к плоту, проведенный из точки подвеса фонаря через центр плота) и радиус плота (r = 0.8 м) образуют прямоугольный треугольник, где проекция и радиус – катеты, а свет фонаря – гипотенуза.  При этом катет, совпадающий с проекцией фонаря на плот равен высоте подвеса фонаря:

    h = 1,2 м.

    Если не принимать во внимание преломление света в воде и предположить, что поверхность дна параллельна плоту, то, если продлить гипотенузу и проекцию фонаря до дна, получим подобный малому прямоугольный треугольник, у которого проекция и радиус тени от плота – катеты, а свет фонаря - гипотенуза. При этом длина катета, являющегося продолжением проекции фонаря, равен:

    H = 1,2 + 2 = 3,2 м.

    Подобие треугольников следует из равенства углов в треугольниках – один угол треугольников совпадает (у точки крепления фонаря), второй угол – прямой, к тому же углы, прилежащие к радиусам равны, так как плот и дно параллельны и пересекаются прямыми (из свойств параллельных прямых).  

    А если треугольники подобны, то стороны большего треугольника пропорциональны сторонам меньшего треугольника. Значит радиус плота (r) также пропорционален радиусу тени плота (R), как пропорциональны друг другу катеты:

    r / R = h / H;

    0,8 / R = 1,2 / 3,2;

    R = 3,2 * 0,8 / 1,2 =  32/15 = 2 2/15 м.

    Ответ: радиус тени плота составляет 2 2/15 м.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years