Предмет:
МатематикаАвтор:
анонимПо условию задачи легковой автомобиль догнал грузовик за 30 км до станции, а на обратном пути встретил за 6 км до станции. Значит за время от первой встречи до второй легковой автомобиль проехал:
30 + 6 = 36 км.
Грузовик за тоже время проехал:
30 - 6 = 24 км.
36 : 24 = 1,5, значит скорость легкового автомобиля в 1,5 раза больше, чем у грузовика.
Допустим, что скорость грузовика равна х км/ч, тогда скорость легкового автомобиля равна 1,5 * х км/ч.
С такой скоростью грузовик проедет 30 км за 30/х часов, а легковой автомобиль за 30/1,5 * х = 20/х часов.
Так как легковой автомобиль выехал на 1/2 часа позже, то получаем уравнение:
30/х - 1/2 = 20/х,
(60 - х)/2*х = 20/х,
60 * х - х² = 40 * х,
60 * х - 40 * х - х² = 0,
20 * х - х² = 0,
х * (20 - х) = 0,
Так как х не может быть равен 0, значит х = 20 (км/ч), а скорость легкового автомобиля равна 1,5 * 20 = 30 км/ч.
Значит легковой автомобиль догнал грузовик за:
30 : 30 = 1 час.
Автор:
frankieyplyДобавить свой ответ