Предмет:
МатематикаАвтор:
selahОтвет:To solve this inequality:
1. Factor out the common factor 3.
3(x² + 4x - 12) ≤ 0
2. Factor the expression inside the parentheses using the product-sum method.
3(x + 6)(x - 2) ≤ 0
3. Find the critical values by setting each factor equal to zero and solving for x.
x + 6 = 0 → x = -6
x - 2 = 0 → x = 2
4. Plot the critical values on a number line.
-6 2
5. Test a point in each of the three intervals that are created on the number line by the critical values.
For x < -6, choose x = -7: 3(-1)(-9) ≤ 0 --> True
For -6 < x < 2, choose x = 0: 3(6)(-12) ≤ 0 --> True
For x > 2, choose x = 3: 3(27)(6) > 0 --> False
6. Determine the solution to the inequality.
The inequality is satisfied when x ≤ -6 or 2 ≤ x.
So the solution can be written as:
x ≤ -6 or x ≥ 2.
Пошаговое объяснение:
Автор:
mohamedmcdanielДобавить свой ответ
Предмет:
МатематикаАвтор:
tessОтветов:
Смотреть
Предмет:
ЛитератураАвтор:
harmonyОтветов:
Смотреть
Предмет:
Українська моваАвтор:
jettaОтветов:
Смотреть