• Применяя правило Лопиталя, вычислить предел [tex]\lim_{x \to \0} \frac{e^{2x}-cosx-sin2x}{x^{2}}[/tex]

Ответы 1

  • \lim_{x \to 0} \frac{e^{2x}-cosx-sin2x}{x^2}=\lim_{x \to 0} \frac{2e^{2x}+sinx-2cos2x}{2x}=\lim_{x \to 0} \frac{4e^{2x}+cosx+4sin2x}{2}=

    =\frac{4+1+0}{2}=2,5.

    Мы использовали дважды правило Лопиталя, так как ф-ии и в числителе и в знаменателе - непрерывны и бесконечно дифференцируемы в окрестности точки х = 0, да и на всем множестве R действит. чисел.

    Ответ: 2,5

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years