• Уравнение по тригонометрии
    [tex]4(1-cosx)=3sin\frac{x}{2}*cos^2\frac{x}{2}[/tex]
    Пробовал (1-cosx) заменить 2cos^2 x/2, что-то не решение явно идет не по верному пути...

Ответы 1

  • 4(1-\cos x)=3\sin\frac{x}{2}\cos^2\frac{x}{2}
\\\
4(\sin^2 \frac{x}{2}+\cos^2 \frac{x}{2} -\cos^2 \frac{x}{2} +\sin^2 \frac{x}{2} )=3\sin\frac{x}{2}\cos^2\frac{x}{2}
\\\
8\sin^2 \frac{x}{2}=3\sin\frac{x}{2}\cos^2\frac{x}{2}
\\\
\sin\frac{x}{2}(8\sin \frac{x}{2}-3\cos^2\frac{x}{2})=0
\\\
\sin\frac{x}{2}=0
\\\
\frac{x}{2}= \pi n
\\
x_1=2 \pi n, \ n\in Z8\sin \frac{x}{2}-3\cos^2\frac{x}{2}=0
\\\
8\sin \frac{x}{2}-3(1-\sin^2\frac{x}{2})=0
\\\
3\sin^2\frac{x}{2}+8\sin \frac{x}{2}-3=0
\\\
D_1=4^2-3\cdot(-3)=25
\\\
\sin \frac{x}{2} eq  \frac{-4-5}{3} =-3\ \textless \ -1
\\\
\sin \frac{x}{2} =\frac{-4+5}{3} = \frac{1}{3} 
\\\
\frac{x}{2} =(-1)^k\arcsin \frac{1}{3}+ \pi k
\\\
x_2 =2\cdot(-1)^k\arcsin \frac{1}{3}+2 \pi k, \ k\in ZОтвет: 2 \pi n и 2\cdot(-1)^k\arcsin \frac{1}{3}+2 \pi k, где n и k - целые числа
    • Автор:

      juicy
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years