• Найти предел с помощью формулы Тейлора:lim = \frac{ {e}^{x} - 1 - x}{ {x}^{2} } при х стремящемся к 0​

Ответы 1

  • e^x-1=x+\frac{x^2}{2}+\frac{x^3}{6}+\mathcal{O}\left ( x^4 \right )\Rightarrow \lim\limits_{x\to 0}\frac{e^x-1-x}{x^2}=\lim\limits_{x\to 0}\frac{x+\frac{x^2}{2}+\frac{x^3}{6}+\mathcal{O}\left ( x^4 \right )-x}{x^2}=\\=\lim\limits_{x\to 0}\frac{1}{x^2}\left ( \frac{x^2}{2}+\frac{x^3}{6}+\mathcal{O}\left ( x^4 \right ) \right )=\lim\limits_{x\to 0}\left ( \frac{1}{2}+\frac{x}{6}+\ldots \right )=\frac{1}{2}

    • Автор:

      maryciuz
    • 1 год назад
    • 9
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years