Ответ: [2;+∞).
Объяснение:
a³+ 8 ≥ 2a² + 4a, где a ≥ –2.
(a+2)(a²-2a+4)≥2a(a+2); [:(a+2)]
a²-2a+4≥2a;
a²-4a+4≥0;
a1+a2=4;
a1*a2=4;
a1=a2≥2.
Ответ: a∈[2;+∞).
Автор:
jademarsha³+ 8 ≥ 2a² + 4a, де a ≥ –2.
(a+2)(a²-2a+4) ≥ 2a(a+2);
оскільки а+2≥ 0 при а ≥ -2, то поділемо нерівність на (а+2), [не змінюючи знака нерівності]:
a²-2a+4≥2a,
a²-4a+4≥0,
(а-2)² ≥ 0 при а ≥ -2.
Отже,
a³+ 8 ≥ 2a² + 4a при a ≥ –2.
Доведено.
Автор:
catalinayoderДобавить свой ответ
Предмет:
АлгебраАвтор:
cameronedwardsОтветов:
Смотреть
Предмет:
МатематикаАвтор:
raisonОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
princess54Ответов:
Смотреть