• Биссектриса угла А прямоугольника АВСД делит сторону ВС в точке М.ВМ=10, МС=14.На отрезки какой длины эта биссектриса

Ответы 1

  • Для решения рассмотрим рисунок (http://bit.ly/35XLYWC).

    Так как АК биссектриса угла ВАД, а сторона ВС параллельна АД, то угол АМВ = ДАМ как накрест лежащие углы при пересечении секущей АМ параллельных прямых АД и ВС.

    Тогда и угол ВАМ = ВМА, а значит треугольник АВМ прямоугольный и равнобедренный, АВ = ВМ = 10 см.

    АД = ВС = ВМ + СМ = 10 + 14 = 24 см.

    По теореме Пифагора, в треугольнике АВД определим длину гипотенузы АД.

    ВД2 = АВ2 + АД2 = 100 + 567 = 676.

    ВД = 26 см.

    Рассмотрим треугольники АОД и ВОМ у которых угол ОАД = ВМО, как накрест лежащие, угол АОД = ВОМ как вертикальные, тогда треугольники подобны по двум углам, а значит К = ВМ / АД = 10 / 24 = 5/12.

    Тогда ВО / ДО = 5/12.

    ВО = 5 * ДО / 12.

    ВО + ДО = 26 см.

    5 * ДО / 12 + ДО = 26 см.

    17 * ДО = 26 * 12.

    ДО = 312 / 17 = 18(6/17) см.

    Тогда ВО = 26 – 312 / 17 = 130/17 = 7(11/17) см.

    Ответ: Точка О делит отрезок ВД на отрезки 18(6/17) см и 7(11/17) см.

    • Автор:

      hank
    • 2 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years