• Основания трапеции равны 3 см и 11 см, а диагонали 13см и 15 см. найти площадь трапеции.

Ответы 1

  • Для решения рассмотрим рисунок (https://bit.ly/2pmZaR9).

    Произведем дополнительные построения. Проведем отрезок СЕ параллельный диагонали ВД и соединим точку Д с точкой Е. Так как полученная фигура параллелограмм, то ВС = ДЕ = 15 см, а ВД = СЕ = 12 см.

    Площадь трапеции равна сумме площадей двух треугольников. Sтр = Sавс + Sасд.

    Площадь треугольника АВС можно определить по формуле: Sавс = ВС * НД / 2.

    Определим площадь треугольника СДЕ. Sсде = ДЕ * НД / 2.

    Так как ДЕ = ВС, то Sавс = Sсде.

    Тогда Sтр = Sасд + Sсде = Sасе.

    Площадь треугольника АСЕ определим по теореме Герона.

    Sасе = √р * (p - a) * (p - b) * (p - c), где р – полупериметр треугольника, а, b, c – длины сторон треугольника.

    р = (АС + СЕ + АЕ) / 2 = (13 + 15 + 14) / 2 = 21 см.

    Sасе = √21 * (21 - 13) * (21 - 15) * (21 - 14) = Sасе = √21 * 8 * 6 * 7 = √7056 = 84 см2.

    Sта = Sасе = 84 см2.

    Ответ: Площадь трапеции равна 84 см2.

    • Автор:

      tiny87
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years