Для того, чтобы найти длину стороны равностороннего треугольника, длина медианы которой 13√3 давайте рассуждать.
По свойству равностороннего треугольника медиана делит сторону, к которой проведена, на два равных отрезка. И одновременно является высотой.
В результате мы получаем два одинаковых прямоугольных треугольника.
Введем переменную x обозначив ею сторону треугольника.
В прямоугольном треугольнике гипотенуза будет равна x, один из катетов равен x/2 (половина стороны к которой проведена медиана), второй катет — это медиана равная 13√3.
Применим теорему Пифагора и получим.
x2 = (x/2)2 + (13√3)2;
x2 = 507 + x2/4;
4x2 = 2028 + x2;
4x2 - x2 = 2028;
3x2 = 2028;
x2 = 2028 : 3;
x2 = 676;
x = √676;
x = 26 длина стороны треугольника.
Автор:
duckling6knxДобавить свой ответ