Для решения рассмотрим рисунок (http://bit.ly/2ObfhOK).
Так как прямые ВВ1 и СС1, по условию, параллельны, то они лежат в одной плоскости. Отрезок ВС лежит в этой плоскости, точка А лежит на отрезке ВС, тогда и точка А принадлежит этой плоскости.
Тогда точки пересечения А, С1, В1 лежат на одной прямой.
Треугольники АСС1 и АВВ1 подобны по двум углам.
Так как точка С середина отрезка АВ, то АС = ВС, АВ = 2 * АС.
Тогда коэффициент подобия треугольников равен: К = АС / АВ = АС / 2 * АС = 1/2.
Тогда и СС1 / ВВ1 = 1/2.
СС1 = ВВ1 / 2 = 12 / 2 = 6 см.
Ответ: Длина отрезка СС1 равна 6 см.
Автор:
sadieДобавить свой ответ