• Косинус одного из углов равен 0,8 гипотенуза 20 см найдите катеты треугольника

Ответы 1

  • Треугольник – это три точки, не лежащие на одной прямой, соединенные отрезками. При этом точки называются вершинами треугольника, а отрезки – его сторонами.

    Прямоугольным называется треугольник, в которого один угол прямой (равен 90º). Сторона, противолежащая прямому углу (сторона АВ) называется гипотенузой, а две другие катетами. 

    Для вычисления длины катетов применим теорему косинусов. Косинусом острого угла прямоугольного треугольника есть отношение прилежащего катета к гипотенузе:

    cos А = АС / АВ;

    АС = АВ ∙ cos А;

    АС = 20 ∙ 0,8 = 16 см.

    Для вычисления длины катета ВС применим теорему Пифагора, согласно которой квадрат гипотенузу равен сумме квадратов катетов:

    АВ2 = ВС2 + АС2;

    ВС2 = АВ2 - АС2;

    ВС2 = 202 – 162 = 400 - 256 = 144;

    ВС = √144 = 12 см.

    Ответ: длина катета АС равна 16 см, длина ВС равна 12 см.

    • Автор:

      rios
    • 2 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years