Для решения рассмотрим рисунок (https://bit.ly/2MrSRp8).
По условию, одна из сторон треугольника проходит через центр окружности, следовательно, эта сторона является диаметром окружности и гипотенузой прямоугольного треугольника, так как, ели одна из сторон треугольника есть диаметр окружности, то вписанный треугольник прямоугольный.
Пусть АВС вписанный треугольник, у которого угол С прямой, катет АС = 6 см, СВ = 8 см, по условию.
По теореме Пифагора гипотенуза АВ будет равна.
АВ2 = АС2 + ВС2 = 62 + 82 = 36 * 64 = 100. АВ = 10 см.
Тогда радиус окружности будет равен: ОА = АВ / 2 = 10/2 = 5 см.
Ответ: Радиус окружности равен 5 см.
Автор:
aubriebxhzДобавить свой ответ
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть