Диагональ равнобедренной трапеции является биссектрисой ее острого угла и делит среднюю линию трапеции на отрезки 10 см и 22 см. Найти площадь трапеции.
Площадь трапеции равна произведению средней линии на высоту.Средняя линия трапеции равна 10+22 = 32 см.Так как диагональ является биссектрисой острого угла, то боковая сторона равна меньшему основанию.Меньшее основание и боковая сторона равны 10*2 = 20 см,большее основание равно 22*2 = 44 см.Тогда высота трапеции равна √20^2 - ((44 - 20)/2)^2 = √256 = 16 см.И, наконец, площадь равна 16*32 = 512 кв. см.Ответ: 512 кв см