Решение4x+3cos4x=0cos4x(cos4x + 3) = 01) cos4x = 04x = π/2 + πk, k∈Zx = π/8 + πk/4, k∈Z2) cos4x + 3 = 0cos4x = - 3 не удовлетворят условию I cosxI ≤ 1Ответ: x = π/8 + πk/4, k∈Z14x+5cosx-1=014(1 - cos²x) + 5cosx - 1 = 014 - 14cos²x + 5cosx - 1 = 014cos²x - 5cosx - 13 = 0I cosx I ≤ 1cosx = t14t² - 5t - 13 = 0D = 25 + 4*14*13 = 753t₁ = (5 - √753)/28 t₂ = (5 + √753)/28 не удовлетворят условию I cosxI ≤ 1cosx = (5 - √753)/28 x = (+ -)arccos(5 - √753)/28 + 2πn, n∈Z