Предмет:
МатематикаАвтор:
анонимНайдём производную нашей данной функции: f(x) = (x + 1) / (x^2 + 1).
Воспользовавшись основными формулами и правилами дифференцирования:
(x^n)’ = n * x^(n-1).
(с)’ = 0, где с – const.
(с * u)’ = с * u’, где с – const.
(u ± v)’ = u’ ± v’.
(u / v)’ = (u’v - uv’) / v2.
y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).
Таким образом, производная нашей данной функции для примера будет следующая:
f(x)\' = ((x + 1) / (x^2 + 1))’ = ((x + 1)’ * (x^2 + 1) - (x + 1) * (x^2 + 1)’) / (x^2 + 1)^2 = (((x)’ + (1)’) * (x^2 + 1) - (x + 1) * ((x^2)’ + (1)’)) / (x^2 + 1)^2 = ((1 + 0) * (x^2 + 1) - (x + 1) * (2x + 0)) / (x^2 + 1)^2 = (x^2 + 1 - 2x^2 - 2x) / (x^2 + 1)^2 = (-x^2 - 2x + 1) / (x^2 + 1)^2.
Ответ: Производная нашей данной функции будет равна f(x)\' = (-x^2 - 2x + 1) / (x^2 + 1)^2.
Автор:
félix5s4fДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть