Предмет:
МатематикаАвтор:
анонимНайдём производную нашей данной функции: f(x) = (x^3) / (x^2 + 5).
Воспользовавшись основными формулами и правилами дифференцирования:
(x^n)’ = n * x^(n-1).
(с)’ = 0, где с – const.
(с * u)’ = с * u’, где с – const.
(u ± v)’ = u’ ± v’.
(u / v)’ = (u’v - uv’) / v2.
y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).
Таким образом, производная нашей данной функции будет следующая:
f(x)\' = ((x^3) / (x^2 + 5))’ = ((x^3)’ * (x^2 + 5) - (x^3) * (x^2 + 5)’) / (x^2 + 5)^2 = ((x^3)’) * (x^2 + 5) - (x^3) * ((x^2)’ + (5)’)) / (x^2 + 5)^2 = (3x^2 * (x^2 + 5) - (x^3) * (2x + 0)) / (x^2 + 5)^2 = (3x^4 + 15x^2 - 2x^4) / (x^2 + 5)^2 = (x^4 + 15x^2) / (x^2 + 5)^2.
Ответ: Производная нашей данной функции будет равна f(x)\' = (x^4 + 15x^2) / (x^2 + 5)^2.
Автор:
fryeДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть