Ответы 1

  • Найдём производную нашей данной функции: f(x) = (x^3) / (x^2 + 5).

    Воспользовавшись основными формулами и правилами дифференцирования:

    (x^n)’ = n * x^(n-1).

    (с)’ = 0, где с – const.

    (с * u)’ = с * u’, где с – const.

    (u ± v)’ = u’ ± v’.

    (u / v)’ = (u’v - uv’) / v2.

    y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).

    Таким образом, производная нашей данной функции будет следующая:

    f(x)\' = ((x^3) / (x^2 + 5))’ = ((x^3)’ * (x^2 + 5) - (x^3) * (x^2 + 5)’) / (x^2 + 5)^2 = ((x^3)’) * (x^2 + 5) - (x^3) * ((x^2)’ + (5)’)) / (x^2 + 5)^2 = (3x^2 * (x^2 + 5) - (x^3) * (2x + 0)) / (x^2 + 5)^2 = (3x^4 + 15x^2 - 2x^4) / (x^2 + 5)^2 = (x^4 + 15x^2) / (x^2 + 5)^2.

    Ответ: Производная нашей данной функции будет равна f(x)\' = (x^4 + 15x^2) / (x^2 + 5)^2.

    • Автор:

      frye
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years