Предмет:
МатематикаАвтор:
анонимПериметр (Pпр) = 30 cм;
Sпр = 56 см^2;
Длина (а) – ? см;
Ширина (b) – ? см;
Периметр заданного прямоугольника находится по формуле:
Pпр = (a + b) * 2 = 30 (1).
Площадь прямоугольника определяется соотношением:
Sпр = a * b = 56 (2).
Из (1) формулы периметра выразим b:
(a + b) * 2 = 30;
a + b = 15;
b = 15 – a.
Теперь подставим полученное выражение в формулу нахождения площади прямоугольника:
a * (15 – a) = 56;
15a – a^2 = 56;
a^2 - 15a + 56 = 0;
D = (-15)^2 – 4 * 1 * 56 = 225 – 224 = 1; sqrt(D) = ±1.
a1 = (15 +1) / 2 = 8 (см);
a2 = (15 -1) / 2 = 7 (см).
Подставляя полученное значение одной из сторон прямоугольника в выражение для нахождения другой стороны, получаем:
b1 = 15 – a = 15 – 7 = 8 (см);
b2 = 15 – a = 15 – 8 = 7 (см).
Ответ: стороны прямоугольника равны 7 см и 8 см.
Автор:
katiee4eaДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть