• В правильной четырёхугольной пирамиде SABCD
    M— середина ребра
    BC,
    S — вершина.
    DM=6√5, 
    SM=√292. Найдите 
    высоту пирамиды.

    question img

Ответы 1

  • Искомая высота у нас в прямоугольном треугольнике SOM ( O - точка пересечения диагоналей, и соответственно в неё опускается высота ). Пусть сторона квадрата - а, следовательно, если нам дано DM, то из прямоугольного треугольника DMC можно найти эту сторону: DM^2=MC^2+DC^2, откуда 36*5 = a^2 + (a^2)/4 (т.к. MC - половина стороны квадрата), а=12. Диагональ квадрата = 12\sqrt{2}. Из другого прямоугольного треугольника OBM найдем OM: OM^2=OB^2 - BM^2. OM=6. И из треугольника SOM ищем SO по теореме пифагора, SO=16.

    Чтобы решить задачу необходимо знание теоремы пифагора, диагонали квадрата.

    • Автор:

      andylewis
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years