• Стороны параллелограмма равны 6√2 см и 9 см,а угол между ними- 135 градусов. Найдите площадь параллелограмма

Ответы 1

  • 1. Вершины параллелограмма - А, В, С, Д. АВ = 6√2 сантиметров. ВС = 9 сантиметров. ВЕ -

    высота (проведена к стороне АД). S - площадь параллелограмма. ∠В = 135°.

    2. ∠АВЕ = ∠В - ∠СВЕ = 135° - 90° = 45°.

    3. Вычисляем длину высоты ВЕ через одну из тригонометрических функций ∠АВЕ (косинус):

    ВЕ/АВ = косинус ∠АВЕ = косинус 45° = √2/2.

    ВЕ = 6√2 х √2/2 = 6 сантиметров.

    4. S = ВС х ВЕ = 9 х 6 = 54 сантиметра².

    Ответ: S равна 54 сантиметра².

     

    • Автор:

      philip
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years