• Гипотенуза равнобедренного прямоугольного треугольника равна 7 корней из 2.Найдите катет.Еще 1 задача. Высота равностороннего

Ответы 1

  • 1)

    Для решения рассмотрим рисунок (https://bit.ly/2MNHXgZ).

    Первый способ.

    Так как треугольник равнобедренный и прямоугольный, то его катеты равны, а углы при гипотенузе равны 450.

    Cинус угла прямоугольного треугольника это отношение противолежащего катета к гипотенузе.

    SinACB = АВ / ВС.

    Sin45 = AB / (7 * √2).

    АВ = (√2 / 2) * (7 * √2) = 7 см.

    АС = 7 см.

    Второй способ.

    Пусть АВ = ВС = Х.

    По теореме Пифагора, Х2 + Х2 = (7 * √2)2.

    2 * Х2 = 49 * 2.

    Х = √49 = 7 см.

    АВ = ВС = 7 см.

    Ответ: Катеты треугольника равны 7 см.

    2)

    Для решения рассмотрим рисунок (https://bit.ly/2LrLeh4).

    Так как треугольник равносторонний, то АВ = ВС = АС.

    В равностороннем треугольнике высота совпадает с медианой треугольника, следовательно, АН = СН.

    Пусть АН = СН = Х см, тогда АВ = ВС = 2 * Х.

    Рассмотрим прямоугольный треугольник АВН, и по теореме Пифагора найдем АВ.

    АВ2 = ВН2 + АН2.

    (2 * Х)2 = (25 * √3)2 + Х2.

    4 * Х2 = 1875 + Х2.

    3 * Х2 = 1875.

    Х2 = 1875 / 3 = 625.

    Х = 25 см.

    АВ = ВС = АС = 2 * Х = 2 * 25 = 50 см.

    Тогда Равс = 3 * 50 = 150 см.

    Ответ: Периметр треугольника равен 150 см.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years