Сечение шара представляет собой круг, площадь которого равна Sсеч = πr2, где r - радиус сечения. По условию, площадь сечения шара равна 16π см2, значит:
πr2 = 16π;
r2 = 16;
r = √16 = 4 см.
Из прямоугольного треугольника, образованного радиусом r данного сечения, радиусом шара R и перпендикуляром l, проведенным из центра шара к плоскости, равным 3 см, по теореме Пифагора можем найти радиус шара:
R2 = r2 + l2 = 42 + 32 = 16 + 9 = 25;
R = √25 = 5 см.
Площадь поверхности шара определяется по формуле:
S = 4πR2 = 4 * π * 52 = 100π ≈ 314,16 см2.
Автор:
porkyДобавить свой ответ