Предмет:
МатематикаАвтор:
анонимНам нужно решить неполное квадратное уравнение -1/5 * x^2 = 0. Давайте составим алгоритм действий для решения заданного уравнения.
Алгоритм действий для решения уравнения -1/5 * x^2 = 0Давайте вспомним как выглядит полное квадратное уравнение.
ax^2 + bx + c = 0, где a, b, c некоторые числа, a x — переменная. a не равна нулю иначе уравнение не будет квадратным.
Если коэффициент c = 0, то уравнение имеет вид ax^2 + bx = 0 — неполное квадратное уравнение.
Если коэффициент b = 0, то уравнение имеет вид ax^2 + c = 0 — неполное квадратное уравнение.
Так же возможен вариант, когда b = 0 и c = 0, то уравнение имеет вид ax^2 = 0 — неполное квадратное уравнение.
Наше уравнение как раз и относится к последнему случаю.
Решаем неполное квадратное уравнение -1/5x^2 = 0Первым шагом в решении уравнения избавимся от коэффициента перед переменной.
Для этого умножим на - 5 обе части уравнения и получим:
-1/5x^2 * (-5) = 0 * (-5);
x^2 = 0;
Извлечем из обеих частей уравнения квадратный корень, получим:
x = 0.
Корень найден, давайте проверим правильно ли мы его нашли.
Подставляем x = 0 в исходное уравнение:
-1/5 * x^2 = 0;
-1/5 * 0^2 = 0;
-1/5 * 0 = 0;
0 = 0.
Корень найден верно.
Ответ: x = 0.
Автор:
velveti56mАвтор:
papamiddletonДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть