• Y=2-x^2,при |x-2|≥1y=3/x,при |x-2|<1Как решить эту систему?

Ответы 1

  •    1. Решим неравенство:

    • |x - 2| < 1;
    • -1 < x - 2 < 1;
    • -1 + 2 < x - 2 + 2 < 1 + 2;
    • 1 < x < 3;
    • x ∈ (1; 3).

       2. Таким образом, функцию, заданную условно:

    • y = {2 - x^2, при |x - 2| ≥ 1;
    • y = {3/x, при |x - 2| < 1,

    можно представить в виде:

    • y = {f(x) = 2 - x^2, при x ∈ (-∞; 1] ∪ [3; ∞);
    • y = {g(x) = 3/x, при x ∈ (1; 3).

       3. Область определения функции:

          x ∈ R.

       4. Исследуем функцию на непрерывность:

       a) x = 1;

    • f(1) = 2 - 1^2 = 2 - 1 = 1;
    • g(1) = 3/1 = 3.

       b) x = 3;

    • f(3) = 2 - 3^2 = 2 - 9 = -7;
    • g(3) = 3/3 = 1.

       Точки разрыва функции:

       x = 1; x = 3.

    • Автор:

      mullins
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years