Предмет:
МатематикаАвтор:
анонимх^2 - 4 > 0.
Рассмотрим функцию у = х^2 - 4, это квадратичная парабола, ветви вверх.
Найдем нули функции: у = 0; х^2 - 4 = 0.
Разложим на множители по формуле разности квадратов:
х^2 - 4 = х^2 - 2^2 = (х - 2)(х + 2).
(х - 2)(х + 2) = 0;
х - 2 = 0; х = 2.
х + 2 = 0; х = -2.
Отмечаем на числовой прямой точки -2 и 2, схематически рисуем параболу, проходящую через эти точки (ветви вверх). Неравенство имеет знак > 0, значит решением неравенства будут промежутки, где парабола находится выше прямой, то есть (-∞; -2) и (2; +∞).
Автор:
leahДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть