• В треугольник АБС угол С равен 90 градусов,СH-высота,АС=6 корней из 10 ,tg A=1/3 . Найдите BH

Ответы 1

  • В треугольник АБС угол С равен 90 градусов,СH-высота,АС=6 корней из 10 ,tg A=1/3 . Найдите BH 

    В треугольнике ABC известно: 

    • Угол C равен 90°; 
    • Высота CH;  
    • АС = 6√10; 
    • tg a = 1/3.  

    Найдем ВН.  

    1) Если известен tg a и AC, то можем найти BC. 

    tg a = BC/AC; 

    Отсюда ВС = АС * tg a; 

    BC = 6√10 * 1/3 = 6/3 * √10 = 2 * √10 = 2√10; 

    2) Найдем гипотенузу АВ. 

    АВ = √(АС^2 + BC^2); 

    AB = √((6√10)^2 + (2√10)^2) = √(36 * 10 + 4 * 10) = √(360 + 40) = √400 = 20; 

     

    3) Найдем cos b треугольника АВС. 

    cos b = BC/AB; 

    cos b = 2√10/20 = √10/10; 

    4) Рассмотри треугольник СНВ, где угол Н = 90°. 

    Если известно ВС гипотенуза и cos b, тогда: 

    cos b = ВН/ВС; 

     

    Отсюда, BH = BC * cos b; 

    BH = 2√10 * √10/10 = 2/10 * √100 = 2/10 * 10 = 2; 

    Ответ: BH = 2. 

    • Автор:

      kirbyzg1b
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years